Duplicates Detection in Large Document Database among Symbolically Compressed Images

Rashmi M. Choudhari Student, CSE Department, SIPNA COET Amravati, India.

Dr. D. M. Dakhane Prof., CSE Department, SIPNA COET Amravati, India.

Abstract – An algorithm for duplicate document detection is proposed in this paper that operates directly on images that have been symbolically compressed using techniques related to the ongoing JBIG2 standardization effort. This paper describes a hidden Markov model (HMM) method that recognizes the text in an image by deciphering data from the compressed representation. The detection of duplicate images is a useful means of indexing a large database of documents.

Index Terms – Duplicate detection, Document indexing, Symbolic compression, IM3

1. INTRODUCTION

Duplicate documents can be a significant problem in large collections. Ideally, a duplicate detection algorithm can find both exact duplicates, which have exactly the same content, and partial duplicates which have a large percentage of their text in common. Locating exact duplicates could reduce the storage required for a large database. Finding partial duplicates would allow users to easily find other versions of a given document.

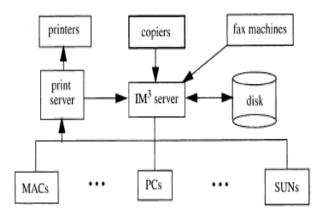
Since document images are usually stored and transmitted in compressed formats, considerable run-time advantages are realized by performing the matching process directly on compressed images (Lee and Hull, 1999a,b). One technical challenge is the extraction of meaningful information from compressed data. Symbolic compression schemes preserve much of the structure in a document image thereby facilitating feature extraction.

They cluster individual blobs and store the sequence of occurrence of clusters and representative blob templates. This kind of compression scheme was originally proposed for binary images of text. Numerous algorithms based on this kind of technique, such as JBIG2 (e.g., Howard et al., 1998) have been pro- posed recently.

Duplicate detection is particularly important for large document databases like that produced by the Infinite Memory Multifunction Machine (IM3). The IM3 system captures a copy of every printed, copied, or faxed document generated in an office. This guarantees that almost any document a user might need will be available when they need it. This concept was developed after it was observed that even though the obvious method for document capture, namely scanners, were commonly available, they were not commonly used.

The IM3 makes document capture effortless by saving an electronic copy of every document that users copy, print, or fax. Furthermore, users are not asked whether any particular document should be captured \pm no conscious decision is required at capture time. Thus, every person in an office that copies, prints, or faxes a document automatically contributes data to the IM3.

The design for the IM3 prototype system that was implemented and tested at the authors' laboratory is shown in Fig. 1. It is based on a typical office environment in which PC's, Mac's, Unix workstations, digital copiers and printers are interconnected on a local area network. When users print a document, it is first sent to the print server. In addition to sending it to the appropriate printer, an electronic copy is transferred to the IM3 server. OCR is automatically performed and the document is indexed for later retrieval. Copiers and fax machines work similarly. After over three years of use, more than 70,000 documents with greater than 300,000 pages have been saved. A substantial number of these documents are undoubtedly duplicates of one another or were created in an edit- print cycle that is commonly used when creating new documents.


2. RELATED WORK

Documents stored in the IM3 are accessed with a web browser. Each user has a home page that provides a portal to their document collection. A number of techniques are provided for search and retrieval. These include full text search and various methods for browsing based on the dates when documents were captured. A method for duplicate detection would give users a means for retrieving exact copies and other versions of a given document. Version retrieval would be particularly useful when after retrieving a document by full text search with a certain set of keywords, the user would like to retrieve other versions of that document. Even though substantial amounts of text may be common between versions, they might not all share the keywords that were used for full text search. A more robust technique is called for.

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 4, April (2017) www.ijeter.everscience.org

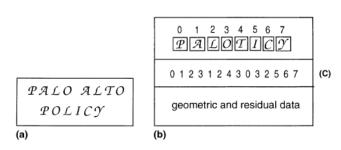
We assume that all document images are com- pressed with a ``symbolic" technique (e.g., JBIG2 (Howard et al., 1998)). Features are extracted directly from the compressed version of document images. A comparison procedure determines whether the feature descriptions of any two documents are similar enough for the original documents to be duplicates.

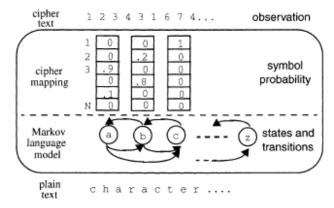
Symbolic compression for binary document images first clusters connected components, which often correspond to isolated characters. A unique identifier is then assigned to each cluster. The compressed document contains one image for each cluster and the sequence of identifiers for the connected components (also called blobs) in the original image. This sequence of identifiers corresponds to the sequence of occurrence of characters in the original document.

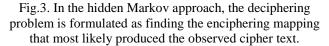
Fig.1.IM3 System Design

An idealized example of a symbolically com- pressed (similar to JBIG2) document image is shown in Fig. 2. An original document image is shown (a) as well as its compressed form (b). The unique letters in the original image are represented as individual sub-images and numeric identifiers at the top of (b). The sequence of identifiers shown in Fig. 2(c) encodes the order in which the corre- sponding sub-images occurred in the original im- age (a). For example, ``0 1 2 3" are the first four sub-images in this sequence. They correspond to the first four letters in the image, ``PALO". The $x\pm y$ locations of the sub-images and image residual data are also encoded in the compressed format.

The characteristic of symbolic compression that we use for duplicate detection is the sequence of cluster identifiers (0 1 2 3 1 2 4 3 0 3 2 5 6 7" in Fig. 2(c)). This sequence encodes a representation for the text in the original document. Since each cluster, for the most part, corresponds to a single character, we can treat the sequence of cluster identifiers as a substitution cipher.




Fig.2(a) The Compressed Image,(b) Sequence of Indentifiers,


(c) Encodes the order of characters in original document.

An idealized example of a symbolically compressed document image is shown in fig. 2.An original document image is shown (a) as well as its compressed form(b).The unique letters in the original image are represented as individual sub-images and numeric identifiers at the top of(b).The Sequence of Identifiers are shown in fig. 2(c) encodes the order in which the corresponding sub-images occurred in the original image(a).

3. PROPOSED MODELLING

The HMM deciphering algorithm described here is more robust to the commonly occurring problem of there being more than one cluster for a given character identity in a typical document image than other substitution deciphering solutions. The deciphering approach is particularly suitable for processing symbolically compressed documents because pattern clustering and sorting are part of the compression process. The sequence of cluster identifiers, accounting for only 20% of the total bits required for lossy compression, can be easily accessed and transmitted without de- coding the image.

Markov models have been used for natural language modeling. If we accept the Markov process of state traversal as a language source from which a particular plain text message can be generated with some probability, then the added symbol production at the traversed states in a HMM perfectly describes the enciphering procedure of a monographic substitution cipher, where each letter in plain text is replaced with a cipher symbol one at a time. This analogy between source language modeling as a Markov process and representation of the enciphering function by symbol probabilities is the basis for our solution, as shown in Fig.3.

4. RESULTS AND DISCUSSIONS

Several experiments were conducted. The HMM deciphering solution was first tested on simulated simple substitution ciphers to establish a baseline performance in the ideal case. The algorithm was then applied to a small number of symbolically compressed documents to measure its performance on real document images. This measured performance was then used in a simulated test to demonstrate the feasibility of detecting duplicates by deciphering images.

For the simulated simple substitution cipher experiments, the University of Calgary corpus was used as a language source. Our plain text alphabet is composed of 26 lower case letters and the space character. The identity matrix is used for enciphering: each lower case letter is mapped to its corresponding upper case letter, and the space character is mapped to itself. After removing typesetting commands, deleting punctuations and performing necessary preprocessing, test sets of varying length passages were generated. Bigram and trigram statistics estimated from a separate training file are used to initialize the HMMs. We ran each experiment for a maximum of 10 iterations or until the changes in the solution matrix become smaller than a threshold. The decode rates for the various trials are summarized in Table 1.

Length (char)	100	400	800	1600
Bigram %decode	57.55	93.19	96.74	99.13
Trigram %decode	66.47	98.80	99.01	99.54

 Table 1: Summary of final decoding rates for HMM bigram and trigram models on simple ciphers

The results show that for ciphers of length greater than 1600 characters, both the bigram and trigram models can fully recover the original text. A trigram model can successfully decipher the majority of a cipher text as short as 400 characters, at a cost of increased running time. In most cases, a bigram model provides a good balance between efficiency and performance.

The HMM deciphering algorithm was then applied to blob sequences extracted from real images compressed with mgtic in the MG library.

5. CONCLUSION

A method was presented for performing document duplicate detection directly on images in a symbolic compression format. Since the language statistics inherent in document content are largely preserved in the sequence of cluster identifiers, the original character interpretations can be recovered with a deciphering algorithm. We proposed an HMM solution for the deciphering problem. While the overall character interpretation rates are not perfect, we demonstrated that sufficient information is recovered for document duplicate detection. This offers an efficient and versatile solution to detecting full and partial duplicates. It also provides a useful method for indexing large document databases. Future work will consider implementation of this technique in the IM3 system.

REFERENCES

- Ascher, R.N., Nagy, G., 1974. A means for achieving a high degree of compaction on scan-digitized printed text. IEEE Trans. Comput. C-23 (11), 1174±1179.
- [2] Casey, R., Nagy, G., 1968. Autonomous reading machine. IEEE Trans. Comput. C-7.
- [3] Howard, P., Kossentini, F., Martins, B., Forchhammer, S., Rucklidge, W.J., 1998. The emerging JBIG2 standard. IEEE Trans. Circuits Systems Video Technol. 8 (7), 838±848.
- [4] Hull, J.J., Hart, P., 1998. The infinite memory multifunction machine. In: Pre-proceedings 3rd IAPR Workshop on Document Analysis Systems, Nagano, Japan, 4±6 Novem- ber, pp. 49±58.
- [5] Hull, J.J., Lee, D.-S., Cullen, J., Hart, P., 1999.Document analysis techniques for the infinite memory multifunction machine. In: Proc. 10th Internat. Workshop on Database and Expert System Applications, Florence, Italy, 1±3 September, pp. 561±565.
- [6] King, J., Bahler, D., 1992. An implementation of probabilistic relaxation in the cryptanalysis of simple substitution ciphers. Cryptologia 16 (3), 215±225.
- [7] Lee, D.-S., Hull, J.J., 1999.Information extraction from symbolically compressed document images. In: Proc. 1999 Symposium on Document Image Understanding Technology, Annapolis, MD, 14±16 April, pp. 176±182.
- [8] Lee, D.-S., Hull, J.J., 1999. Duplicate detection for symbolically compressed documents. In: Proc. 5th Internat. Conf.Document Analysis and Recognition, Bangalore, India, 20±22 September, pp. 305±308.
- [9] Peleg, S., Rosenfeld, A., 1979. Breaking substitution ciphers using a relaxation algorithm. Commun. ACM 22 (11), 598± 605.
- [10] Phillips, I.T., Chen, S., Haralick, R.M., 1993. CD-ROM document database standard. In: Proc. 2nd ICDAR, pp. 478±483.
- [11] Rabiner, L.R., Juang, B.H., 1986. An introduction to hidden Markov models. IEEE ASSP Magazine, 4±16.
- [12] Witten, I., Moffat, A., Bell, T., 1994. Managing Gigabytes: Compressing and Indexing Documents and Images. Van Nostrand Reinhold, New York.

Authors

Rashmi M. Choudhari Student, CSE Department, SIPNA COET Amravati, India.